TD. 511 - TECHNICAL DATA: Estimating Guide for Epoxy Mortar Systems

Revised: 3/16/2023 Version: 1.2
How to use the charts below:
Assume the requirement is to place a $1 /{ }^{\prime \prime}$ thick trowel applied epoxy floor.
1 gallon of mixed epoxy and 5 gallons of typical blend of silica sand $=4$ mortar gallons see chart \#1.
Chart \#2 details how many square feet coverage for each mortar gallon.
Thus 4 mortar gallons @ $1 / 4$ inch thickness $=4.0 \times 6.4=25.6$ square feet per mix @1/4' thickness
(1)

	EPOXY MORTAR YEILD	
EPOXY RESIN	AGGREGATE GALLON	
MIXED GALLON		
1	1	
1	2	2.6
1	3	2.2
1	4	3.4
1	5	4.0
1	6	4.6
1	7	5.2

(2)

COVERAGE PER GALLON OF EPOXY MORTAR (EPOXY BINDER WITH SILICA SAND)

THICKNESS IN INCHES

1/16"

1/8"
3/16"
1/4"
3/8"
1/2"

COVERAGE SQ. FT. PER GALLON
25.7
12.8
8.6
6.4
4.3
3.2
(3)

Coverage for 100\% solids epoxy coatings
(Any coating with no solvents)
(1000 MILS = 1" THICKNESS)

THICKNESS OF COATING APPLIED

COVERAGE PER US GALLON

1/4"	=	250.00 MILS	6.4 SQ. FT. PER GALLON
3/16"	=	187.5 MILS	8.5 SQ FT PER GALLON
1/8"	=	125.0 MILS	12.8 SQ FT PER GALLON
1/16"	=	62.5 MILS	25.5 SQ FT PER GALLON
1/32"	=	31.25 MILS	51.0 SQ FT PER GALLON
1/64"	=	15.63 MILS	102.0 SQ FT PER GALLON
		10 MILS	160.0 SQ FT PER GALLON
		5 MILS	320 SQ FT PER GALLON
		1 MIL	1600 SQ FT PER GALLON

(4)

JOINT FILLING (LINEAL FEET PER GALLON)						
Width	Depth	Coverage per Gallon	Width	Depth		Coverage per Gallon
1/4"	$1 / 4{ }^{17}$	308 If	$13 / 4$ "	1/4"	=	44 If
$1 / 2$ "	$1 / 4$ "	154 If	$13 / 4$ "	$1 / 2$ "	=	22 If
$1 / 2$ "	$1 / 2$ "	77 If	$13 / 4$ "	$3 / 4$	=	14.7 If
$3 / 4$ "	$1 / 4 "$	102.7 If	$13 / 4$ "	$1 "$	=	11.0 If
$3 / 4$ "	$1 / 2$ "	51.3 If	$13 / 4$ "	$11 / 4 "$	$=$	8.8 If
$3 / 4$ "	$3 / 4{ }^{\prime \prime}$	34.2 If	$13 / 4$ "	$11 / 2 "$	=	7.3 If
1"	$1 / 4$ "	77. If	2 "	$1 / 4 /$	=	38.5 If
1"	$1 / 2$ "	38.5 If	2"	$1 / 2$ "	=	19.3 If
1"	$3 / 4$ "	25.7 If	2"	$3 / 4$ "	=	12.8 If
1"	$1 "$	19.3 If	2"	$1 "$	=	9.6 If
$11 / 4$ "	$1 / 4$ "	61.6 If	2"	$11 / 4 "$	=	7.7 If
$11 / 4$ "	$1 / 2$ "	30.8 If	2"	$11 / 2^{\prime \prime}$	=	6.4 If
$11 / 4$.	$3 / 4$ "	20.5 If	$21 / 2 "$	$1 / 4 /$	=	30.8 If
$11 / 4$ "	1"	15.4 If	$21 / 2 \prime$	$1 / 2$ "	=	15.4 If
$11 / 4$ "	$11 / 4 "$	12.3 If	$21 /{ }^{1}$	$3 / 4$ "	=	10.3 If
$11 / 2{ }^{\prime \prime}$	$1 / 4$ "	51.3 If	$21 /{ }^{\prime \prime}$	$1 "$	=	7.7 If
$11 / 2$	$1 / 2$ "	25.7 If	3"	$1 / 4$ "	=	25.7 If
$11 / 2$	$3 / 4$ "	17.1 If	3"	$1 / 2$ "	=	12.8 If
$11 / 2{ }^{1}$	1"	12.8 If	$3 "$	$3 / 4$ "	=	8.6 If
$11 / 2$ "	$11 / 4 "$	10.3 If	$3 "$	$1 "$	=	6.4If
$11 / 2 \prime$	$11 / 2 "$	8.6 If	3"	$11 / 4 "$	=	5.1 If

