TECHNICAL SERVICE REPORT
AC9919
Elite Crete Systems

Client:

Elite Crete Systems
1151 Transport Drive
Valparaiso, IN, 46383 US

Test Laboratory:

Thor Specialties, Inc.
50 Waterview Drive Shelton, CT 06484 USA

Elite Crete Systems

OBJECTIVES:

To examine two Epoxy Resin samples for microbial contamination.
To determine the dry film fungal resistance of an Epoxy coating formulation, unpreserved as well as with $0.15 \%, 0.20 \%, 0.25 \%$ and 0.30% of ACTICIDE ${ }^{\oplus} 45$.

CONCLUSIONS:

Microbiological screening revealed the Epoxy Resin Part A sample was free from contamination upon receipt. Due to the corrosive nature of sample two (Part B), it was not screened.

The two Epoxy Resin samples, Part A and Part B, were combined prior to conducting dry film testing (refer to sample preparation on page 3).

The dry film fungal resistance test results revealed susceptibility could not be established in the unpreserved Epoxy coating formulation under laboratory conditions, therefore the contribution of the biocide could not be determined.

Elite Crete Systems

SAMPLES: $\quad 2$ Crystal Clear Epoxy samples
ADDITIONS: \quad ACTICIDE $^{\circledR} 45$ at $0.10 \%, 0.15 \%$ and 0.20%
SAMPLE PREPARATION: Final coating formulation was prepared as follows:
Mix ratio $=2$ parts A resin to 1 part B hardener by volume Biocide additions were made to the final coating formulation

EXAMINATIONS: Microbial Screening: A700
pH and Redox measurements: A625, A626
Dry Film Fungal Resistance Test, Vermiculite Bed A810

RESULTS: Microbial Screening

		Degre	of Mic	ial gr	th on	pH	Redox
	Sample			PDA	SIM	value	potentia
		$30^{\circ} \mathrm{C}$	$37^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$		(mV)
1	E100-PT Series Part A Epoxy	0	0	0	-		
2	E100-PT Series Part B Epoxy (Corrosive)	N/A	N/A	N/A	N/A		
1/2	Epoxy coating formulation					11.05	-54

Bacteria/Yeast
$0=$ no growth $1=$ very scant $2=$ scant $3=$ light $4=$ moderate $5=$ heavy $6=$ dense
Mold: $0=$ None $X=$ Slight $X X=$ Moderate $X X X=$ Heavy growth $X X X X=$ Dense
Hydrogen Sulfide Producing Bacteria: $-=$ Negative $+=$ Positive $++=$ Strong Positive () = Odor
Growth Media:
NA=Nutrient Agar-for the detection and growth of aerobic bacteria.
PDA=Potato Dextrose Agar-for the detection and growth of yeasts, molds and Acetobacter type species
SIM=Sulphide Indole Motility Agar-for the detection of hydrogen sulfide producing bacteria.

Technical Service Report No. AC9919
Elite Crete Systems

Dry Film Fungal Resistance Test. Vermiculite Bed A810:
Inoculum: Standard Dry Film Fungal Inoculum $6.6 \times 10^{6} \mathrm{cfus} / \mathrm{ml}$
Substrate: Concrete

SAMPLE		Degree of Fungal Growth	
		I	II
	positive control	3	3
	negative control	0	0
1/2	Epoxy coating formulation		
	Unpreserved (Blank)	0	0
	0.15\% ACTICIDE ${ }^{\circledR} 45$	0	0
	0.20\% ACTICIDE ${ }^{\circledR} 45$	0	0
	0.25\% ACTICIDE ${ }^{\circledR} 45$	0	0
	0.30\% ACTICIDE ${ }^{\circledR} 45$	0	0

Film Fungal Growth Ratings Chart for Test Methods A810 \& A800.1

AREA

$0=$ No growth
1 = Trace growth
$2=1-10 \%$ Coverage of growth

3 = $11-30 \%$ Coverage of growth
4 = $31-70 \%$ Coverage of growth
$5=71-100 \%$ Coverage of growth

DENSITY
X = Light
XX= Moderate $X X X=$ Dense

Dry Film Fungal Resistance Test, Vermiculite Bed A810 Pictures:
Substrate: Concrete

Elite Crete Systems

Dry Film Fungal Inocula

1.1 Methods 800.1 and 810 Vermiculite Bed Techniques

Mold Organisms	Culture Collection Reference
Alternaria alternata	ATCC 34509
Aspergillus niger	ATCC 10575
Aspergillus oryzae	ATCC 11488
Aspergillus terreus	IMI 113732
Aureobasidium pullulans	ATCC 9348
Cladosporium cladospoiroides	ATCC 16022
Myrothecium verrucaria	IMI 140594
Penicillium funiculosum	ATCC 11797
Penicillium ochrochloron	IMI 061271
Penicillium rubrum	IMI 113729
Phoma species	ATCC 74077
Stachybotrys chartarum	ATCC 16026
Ulocladium atrum	ATCC 52425
Trichoderma viride	ATCC 24687

Disclaimer

All information contained in this Technical Service Report is intended for use by persons having appropriate knowledge, skill and experience in the chemical industry. THOR SPECIALTIES, INC. shall not be responsible for the use, application or implementation of the information provided in this Technical Service Report and all such information is to be used at the risk, and in the sole judgment and discretion, of such persons, their employees, advisers and agents. The information contained in this Technical Service Report is believed to be reliable, but THOR SPECIALTIES, INC. MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS TECHNICAL SERVICE REPORT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Please note that unless otherwise stated, the conclusions described in this Technical Service Report are based on information drawn from examination of the samples identified in this report only. The information contained in this Technical Service Report is based on laboratory work with small-scale equipment and does not necessarily indicate end product performance. Variations in methods, conditions and equipment used in commercial settings may also have an impact on end product performance, and we recommend that appropriate monitoring of microbiological properties be carried out. Full scale testing and end product performance are solely the responsibility of the user.

